Bifurcations of Dynamical Systems and Numerics University of Zagreb

The Einstein Relation on Metric Measure Spaces

Uta Freiberg
Technische Universität Chemnitz

11. Mai 2023

Motivation: Analysis and stochastics on fractals

Plan of the lecture

1. (Self-similar) fractals
2. Einstein's relation (on open sets)
3. Einstein's relation on the Sierpinski gasket Hausdorff, spectral and walk dimension of the SG
4. Upshot, further examples and non-examples
5. ER on MMSs

1. Introduction: Self similar fractals

1.1. Definition and Examples

$K \subseteq \mathbb{R}^{n}$ is called self similar, if

$$
K=\bigcup_{i=1}^{M} S_{i}(K)
$$

where $M \geq 2$ and $S_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ similitudes.

Exp. Sierpinski gasket:

A, B, C vertices of a unilateral triangel
Family $\mathfrak{S}=\left\{S_{1}, S_{2}, S_{3}\right\}$ of contractions on \mathbb{R}^{2}, where
$S_{1}(x)=\frac{1}{2}(x-A)+A, S_{2}(x)=\frac{1}{2}(x-B)+B, S_{3}(x)=\frac{1}{2}(x-C)+C$

There is a unique (non empty and compact) set K, the so-called Sierpinski gasket:

Again:

It can be obtained by iteration of the three mappings:

Hereby, you can start with any set:

Further examples for self-similarity:

a) Cantor set

c) Pentagasket

b) Sierpinski carpet

d) Snowflake

1.2. What can we model with the help of fractals?

 Application in medicine pulmonary tissue, tumor cells (and their behavior under stress)
electron microscope
picture of the zytoskeleton in a tumor cell in human pancreas

Application in Physics, Material science fractal antenna, fractal conductor plates; porous materials

- Transport on such structures
- „Transmission problems across fractal layers"

$$
\left\{\begin{aligned}
-\Delta_{\mathbb{R}^{n} u} & =g & & \text { in } \Omega_{i}, i=1,2 \\
\Delta_{K} u & =C\left(\frac{\partial u_{1}}{\partial n_{1}}+\frac{\partial u_{2}}{\partial n_{2}}\right) & & \text { on } K
\end{aligned}\right.
$$

\& boundary and continuity conditions

$\underset{\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)}{\text { Aluminiumoxi }}$
Siliziumkarbid (SiC)

> Fe-Cr-Alund Ni-Basis Legierungen

Porous materials
1.3. Analysis on Fractalsin particular: Definition of a Laplacian Δ(wave-, heat-, Schrödinger-equation)
Problem: Fractals are to „,rough" ,,broken" (non smooth)\Longrightarrow no notion of tangent space available\Rightarrow new approaches necessary

Classical approaches:

- limit of difference operators (Dirichlet form theory) Kusuoka, Kigami, Lapidus, Mosco, Hambly, Teplyaev, Strichartz,...
- Construction of the ,,natural" Brownian motion as the limit of a sequence of appropriate renormalized random walks Kusuoka, Barlow, Bass, Perkins, Lindstrøm; Sabot, Metz,...
- Martin boundary theory on the Code space

Denker, Sato, Koch,...

- (fractal dimensional) traces of function spaces (for exp. Sobolev spaces) or via Riesz potentials
Triebel, Haroske, Schmeißer,...; Zähle

New approaches:

- Generalized Laplacians (Δ-Beltrami, Hodge- Δ, Dirac- Δ) M. Hinz, Teplyaev, Rogers,...
- Non-commutative Geometry: Interpretation of the fractal in terms of spectral triple
Bellissard, Falconer, Samuel, Lapidus; Cipriani, Guido, Isola, ...
- Theory of resistance forms

Kigami, Kajino, Alonso-Ruiz, F. ,...

- Approximation by quantum graphs

Teplyaev, Kelleher, Alonso-Ruiz, F. ...; Mugnolo, Lenz, Keller, Post, Kuchment, ...

2. Einstein's Relation

$$
\frac{d_{H}}{d_{S}}=\frac{d_{W}}{2}
$$

where:
d_{H} Hausdorff dimension \longleftrightarrow geometry

d_{S} spectral dimension \longleftrightarrow| analysis |
| :---: |

d_{W} walk dimension \longleftrightarrow

Warming up:
 Einstein's relation for domains $\Omega \subseteq \mathbb{R}^{n}$

$\Omega \subseteq \mathbb{R}^{n}$ open and bounded with smooth boundary $\partial \Omega$
d_{H} Hausdorff dimension
For open domains $\Omega \subseteq \mathbb{R}^{n}$ we have $d_{H}(\Omega)=d_{\text {top }}(\Omega)$. Hence, $d_{H}(\Omega)=n$.
d_{S} spectral dimension
of a set is the double of the leading exponent in the asymptotic eigenvalue counting function of its ,,natural" Laplacian.
Consider a Dirichlet eigenvalue problem

$$
\left\{\begin{aligned}
-\Delta_{n} u & =\lambda u \text { on } \Omega \\
u_{\mid \partial \Omega} & \equiv 0
\end{aligned}\right.
$$

where $\Delta_{n}=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the usual Laplacian in \mathbb{R}^{n}.
H. Weyl, 1915: The eigenvalue counting function

$$
N_{n}(x):=\#\left\{\lambda_{k} \leq x \quad: \quad-\Delta_{n} u=\lambda_{k} u \text { for some } u \neq 0\right\}
$$

(counting according multiplicities) is well defined, and for any $n \in \mathbb{N}$ it holds that

$$
N_{n}(x)=(2 \pi)^{-n} c_{n} \operatorname{vol}^{n}(\Omega) x^{n / 2}+o\left(x^{n / 2}\right), \quad \text { as } \quad x \rightarrow \infty
$$

where $\operatorname{vol}^{n}(\Omega)$ is the n-dimensional volume of Ω and c_{n} the $n-$ dimensional volume of the unit ball in \mathbb{R}^{n}.
Hence, $d_{S}(\Omega)=n$.
d_{W} walk dimension of a set is given by

$$
\left.d_{w}=\frac{\ln \mathbb{E}^{x} \tau(B(x, R))}{\ln R}, \quad \text { i.e. } \mathbb{E}^{x} \tau(B(x, R))=R^{d_{W}}\right)
$$

where

- $\left(X_{t}\right)_{t \geq 0}$,,natural" Brownian motion on this set,
- $\tau(B(x, R)):=\inf \left\{t \geq 0: X_{t} \in \partial B(x, R)\right\} \quad$ and
- \mathbb{E}^{x} expectation of a random variable if we start in x.

It is well known that: $d_{W}(\Omega)=2$.

Therefore, $\frac{d_{H}}{d_{S}}=\frac{d_{W}}{2}$ holds, because of $d_{H}=d_{S}=n, d_{W}=2$.
3. Einstein's relation on the Sierpinski gasket
3.1. The geometry of K : the Hausdorff dimension

What kind of geometrical scaling property a ,,reasonable" notion of dimension d should provide?
volume scaling $=$ length scaling d

The Hausdorff dimension d_{H} has this property!

Sierpinski gasket $K=\bigcup_{i=1}^{3} \psi_{i}(K)$
$A:=(0,0), B:=(1,0), C:=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$\psi:=\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$, where $\psi_{i}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ are the unique contractive similitudes with ratio $\frac{1}{2}$ and fixed points A, B and C, respectively.
$d_{H}(K)=\frac{\ln 3}{\ln 2}$

3.2. Analysis on K : the spectral dimension

 Aim: Define Laplacian Δ_{K} on KSteps:

- Define ,,fractal analogue" $\mathcal{E}_{K}[u]$ of $\mathcal{E}[u]=\int_{\Omega}|\nabla u|^{2} d x$
- $\mathcal{E}_{K}(u, v):=\frac{1}{2}\left(\mathcal{E}_{K}[u+v]-\mathcal{E}_{K}[u]-\mathcal{E}_{K}[v]\right)$ bilinear form
- Δ_{K} via Gauß-Green-formula:

$$
\begin{aligned}
& \qquad \int_{K}\left(\Delta_{K} u\right) v d \mu=\text { boundary terms }-\mathcal{E}_{K}(u, v) \\
& \text { (cf. } \left.\int_{\Omega} \Delta u \cdot v=\text { boundary terms }-\int_{\Omega} \nabla u \cdot \nabla v\right)
\end{aligned}
$$

Approximation of K :

$$
V_{0}:=\{A, B, C\}, \quad V_{n}:=\bigcup_{i=1}^{3} \psi_{i}\left(V_{n-1}\right), n \geq 1
$$

V_{0}, V_{1}, V_{2} and V_{3}

$$
\left(V_{n}\right) \uparrow, \quad V_{*}:=\bigcup_{n \geq 0} V_{n}=\sup _{n \geq 0} V_{n}, \quad K=\overline{V_{*}}
$$

Let be $u: V_{*} \longrightarrow \mathbb{R}$
Ansatz: $\mathrm{E}_{n}[u]:=\varrho^{n} \sum_{p \in V_{n}|p-q|=2^{-n}}(u(p)-u(q))^{2}, \quad n \geq 0$
ϱ energy scaling factor (to be determined later)
Let us be given the values of a function u in the three vertices (ergo on the set V_{0}): $u(A)=u_{A}, u(B)=u_{B}$ and $u(C)=u_{C}$.

$$
\mathcal{E}_{0}[u]=\left(u_{A}-u_{B}\right)^{2}+\left(u_{A}-u_{C}\right)^{2}+\left(u_{B}-u_{C}\right)^{2}
$$

ϱ scaling factor is determined from the balance equation

$$
\begin{equation*}
\min \left\{\mathcal{E}_{1}[v] \mid v: V_{1} \longrightarrow \mathbb{R}, v_{\mid V_{0}}=u\right\} \stackrel{!}{=} \mathcal{E}_{0}[u] \tag{1}
\end{equation*}
$$

Hence, seek for the ,,harmonic extension" \tilde{u} of u

$$
\begin{aligned}
& \mathcal{E}_{1}[u]=\varrho {\left[\left(u(a)-u_{B}\right)^{2}+\left(u(a)-u_{C}\right)^{2}+\left(u_{B}-u(c)\right)^{2}\right.} \\
&+\left(u_{A}-u(b)\right)^{2}+\left(u_{A}-u(c)\right)^{2}+\left(u(b)-u_{C}\right)^{2} \\
&\left.+(u(a)-u(c))^{2}+(u(a)-u(b))^{2}+(u(b)-u(c))^{2}\right] \longrightarrow \min
\end{aligned}
$$

$\tilde{u}(a)=\left(u_{A}+2 u_{B}+2 u_{C}\right) / 5, \tilde{u}(b), \tilde{u}(c)$ analogous. Inserting in (1) yields $\varrho=5 / 3$.

Self similarity and finite ramification \Longrightarrow

$$
\min \left\{\mathcal{E}_{n}[v] \mid v: V_{n} \longrightarrow \mathbb{R}, v_{\mid V_{0}}=u\right\}=\mathcal{E}_{0}[u], \quad \forall n \geq 1
$$

$\Longrightarrow\left(\mathcal{E}_{n}[u]\right)_{n \geq 0}$ non decreasing
defines limit form

$$
\mathcal{E}_{K}[u]:=\lim _{n \rightarrow \infty} \mathcal{E}_{n}[u]
$$

on

$$
\mathcal{D}_{*}:=\left\{u: V_{*} \longrightarrow \mathbb{R}: \mathcal{E}_{K}[u]<\infty\right\}
$$

Extension of $u \in \mathcal{D}_{*}$ to $u \in \mathcal{C}(K)$
$\mathcal{D}:=\overline{\mathcal{D}_{*}}$ completion wrt. $\left(\|\cdot\|_{L_{2}(K, \mu)}^{2}+\mathcal{E}_{K}[\cdot]\right)^{1 / 2}$
$(\mathcal{E}, \mathcal{D})$ is a Dirichlet form on $L_{2}(K, \mu)$

$$
\int_{K}\left(\triangle_{K} u\right) v d \mu=-\mathcal{E}_{K}(u, v)
$$

Δ_{K} (Neumann-)Laplacian

Kigami Lapidus, 1993: Spectral dimension of a so-called ,,nested fractal" is given by

$$
d_{S}=\frac{2 \ln M}{\ln (M \varrho)}
$$

M - number of mappings S_{1}, \ldots, S_{M}
ϱ - energy scaling factor
in the Sierpinski-gasket case: $M=3, \varrho=5 / 3$
$d_{S}(K)=\frac{\ln 9}{\ln 5}$

Remark on how to find ϱ
Technique: Kirchhoff's law (for ex. ,, $\Delta-Y$-law") (\nearrow Graph theory, Analysis on graphs)

(d)

(e)

(f)

Further remarks:

- Berry's conjecture, early 80's: We have a Weyl-asymptotics analogue for fractals K, i.e.

$$
N_{K}(x)=c_{d} \mathcal{H}^{d}(K) x^{d / 2}+o\left(x^{d / 2}\right), \quad \text { für } \quad x \rightarrow \infty
$$

where K is a fractal with Hausdorff dimension $d:=\operatorname{dim}_{\mathrm{H}}(K)$, \mathcal{H}^{d} is the d-dimensional Hausdorff measure, and c_{d} is a constant not depending on K. FAILS! i.g. $d_{H} \neq d_{S}$

- In general it does not hold that: $\mathcal{E}[u] \preceq \mathcal{H}^{d}$, i.e. we don't have $\mathcal{E}[u]=\int|\nabla u|^{2} d \mathcal{H}^{d}$
- First derivatives are harder to define than second derivatives.

3.3. K as a state space of a BB: Walk-Dimension

$$
d_{W}:=\frac{\ln \mathbb{E}^{x} \tau(B(x, R))}{\ln R} .
$$

(actually, in graph theory: $\lim _{R \rightarrow \infty}$ of the r.h.s. is taken)

Start in A, calculate the mean random time until we reach B or C.
τ - (random) time of reaching $\{B, C\}$.

Random walk on the graph with vertex set V_{1}

$$
\begin{aligned}
& \mathbb{E}^{A} \tau=\frac{1}{2}\left(\mathbb{E}^{b} \tau+\mathbb{E}^{c} \tau\right)+1=\mathbb{E}^{c} \tau+1 \\
& \mathbb{E}^{c} \tau=\frac{1}{4}\left(\mathbb{E}^{A} \tau+\mathbb{E}^{b} \tau+\mathbb{E}^{a} \tau+\mathbb{E}^{B} \tau\right)+1=\frac{1}{4}\left(\mathbb{E}^{A} \tau+\mathbb{E}^{c} \tau+\mathbb{E}^{a} \tau\right)+1 \\
& \mathbb{E}^{a} \tau=\frac{1}{4}\left(\mathbb{E}^{C} \tau+\mathbb{E}^{b} \tau+\mathbb{E}^{c} \tau+\mathbb{E}^{B} \tau\right)+1=\frac{1}{2} \mathbb{E}^{c} \tau+1
\end{aligned}
$$

Is LES in $\left(\mathbb{E}^{A} \tau, \mathbb{E}^{c} \tau, \mathbb{E}^{a} \tau\right)^{T}$.

Has a unique solution $\mathbb{E} \tau^{A}=5$.
$d_{W}(K)=\frac{\ln 5}{\ln 2}$
,,sub-diffusive"
$B^{K}(t) \stackrel{\mathcal{D}}{=} \alpha^{2} B^{K}\left(\frac{t}{\alpha^{5}}\right)$
(with Christoph Thäle, Fribourg, CH) Getting expected crossing times from (only) the connection matrix of the graph

4. Upshot:

So, for the Sierpinski gasket we got $d_{H}=\ln 3 / \ln 2, d_{S}=\ln 9 / \ln 5$ and $d_{W}=\ln 5 / \ln 2$.

Obviously, $\frac{d_{H}}{d_{S}}=\frac{d_{W}}{2}$ holds.
„Interpretation": If you are going to investigate a (porous) set with the EYE (leading to d_{H}), the EAR (leading to d_{S}), or the ,,BLIND-AN-DEAF-ANT"'-SENSE (leading to d_{W}), then it is sufficient to run two of these three experiments.

More general: Take a self-similar nested fractal, then we have:

- $d_{H}=\frac{\ln M}{\ln L}$ [Hut'81]
- $d_{S}=2 \frac{\ln M}{\ln (M \varrho)}$ [KigLap'93]
- $d_{W}=\frac{\ln T}{\ln L}$
where M, L, ϱ, T are mass/length/energy/time scaling numbers.
So, (ER) is equivalent with $T=\varrho M$, i.e.
time $=$ resistance \times mass

Literature

- URF: Einstein relation on fractal objects. Discrete Cont. Dyn. Syst. Ser. B 17 (2012), no. 2, 509-525.

Related/pre works:

- [Telcs'06] The art of Random Walk, Springer (ER) on graphs, see also [Tetali'91]

$$
d_{W}:=\lim _{R \rightarrow \infty} \frac{\ln \mathbb{E}^{x} \tau_{R}}{\ln R}
$$

- [HamKigKum'02] multifractal version of (ER)

$$
d_{W}:=\lim _{r \searrow 0} \frac{\ln \mathbb{E}^{x} \tau_{r}}{\ln r}
$$

is equivalent for self-similar fractals!

- HKE-community: [Grig'21], [Barlow'98], ...

$$
p_{t}(x, y) \sim \frac{c}{t^{\alpha / \beta}} \exp \left(-C \frac{d^{\beta(x, y)}}{t}\right)^{\frac{1}{\beta-1}}
$$

where $\alpha=\operatorname{dim}_{H}, \beta=\operatorname{dim}_{W}$, and
$2 \leq \beta \leq \alpha+1$ [Barlow'04]
btw: $\beta=\alpha+1$ for Vicsek
next aims:
find examples st. (ER) fails (with $c=2$)
study MMS's, stability of (ER) (i.e. of c) under mappings on MMS's
(violate these assumptions in oder so construct non-examples)

- Fabian Burghart, URF: The Einstein Relation on Metric Measure Spaces. (2019, arXiv)
$X=$ Brownian path
$d_{H}=3 / 2, d_{S}=1, d_{W}=4$, so we have

$$
\frac{d_{H}}{d_{S}}=\frac{d_{W}}{8 / 3}!
$$

5. ER on MMS's

(joint work with F. Burghart, Uppsala; arXiv)
setting: $\left(X, d_{X}, \mu_{X}\right) \mathrm{MMS}$ st.

- (X, d_{X}) Polish, locally cpt., path connected, $\sharp X \geq 2$
- μ_{X} Radon, $\operatorname{supp} \mu_{X}=X$

In the paper, there are three main parts:

- 5.1 Well-posedness
$\operatorname{dim}_{H} X$ clear;
conditions for well-definedness of $\operatorname{dim}_{S} X$ of some operator A acting on $L_{2}\left(X, \mu_{X}\right)$
conditions for existence of Hunt process $\left(X_{t}\right)_{t \geq 0}$ with i.g. A; dim_{W}
- 5.2 What gets preserved?
find morphisms $\varphi:\left(X, d_{X}, \mu_{X}\right) \rightarrow\left(Y, d_{Y}, \mu_{Y}\right)$ st.
(ER; c) invariant; or - even stronger - $\operatorname{dim}_{H, S, W}$ get preserved
- 5.3 find examples st. ER holds with $c \neq 2$
©5.2. $\varphi:\left(X, d_{X}, \mu_{X}\right) \rightarrow\left(Y, d_{Y}, \mu_{Y}\right)$
- φ bi-Lipschitz + measure-preserving $\Rightarrow \operatorname{dim}_{H}, \operatorname{dim}_{W}$ invariant
(φ homeomorphic + measure-preserving $\Rightarrow \operatorname{dim}_{S}$ invariant)

So, φ bi-Lipschitz + measure-preserving $\Rightarrow(E R ; c)$ preserved

- φ homeomorphic, α-Hölder, + measure-preserving $\Rightarrow \operatorname{dim}_{S}$ preserved
$\operatorname{dim}_{H} \varphi(X) \leq \frac{1}{\alpha} \operatorname{dim}_{H} X$ and
$\overline{\operatorname{dim}}_{W}(\varphi(X), \varphi(M), \varphi(x)) \leq \frac{1}{\alpha} \operatorname{dim}_{W}(X, M, x)$
$M=\left(M_{t}\right)_{t}$ Hunt process on X
$\overline{\operatorname{dim}}_{W}(X, M, x):=\overline{\lim }_{r \searrow 0} \frac{\log \mathbb{E}^{x} \tau_{M, B(x, r)}}{\log r}$
special cases: graphs of α-Hölder functions
@5.3. Counter-Examples
$B^{H}=\left(B_{t}^{H}\right)_{t}$ fractional BM with Hurst index $H \in(0,1)$
$X:=\operatorname{graph} B^{H}$
- $\operatorname{dim}_{H} X=2-H$ a.s. (Adler, 77)
- $\operatorname{dim}_{S} X=1$ a.s.
- $\operatorname{dim}_{W} X=2 / H$ a.s.
so, $c=\frac{2}{(2-H) H}$
$c \in(2, \infty)!$

Open Problems/Remarks

- counter examples are „comb-like" so far
- lower estimate for dim_{W}, time distribution principle ??
- effective dim_{H} ?? $\left(<\operatorname{dim}_{H}\right)$
- for fixed c : minimize/maximize $\operatorname{dim}_{H, S, W}$
- ...

Thank you for your attention!

Save the date: FGS7 in Chemnitz in autumn 2024!

